Title: | Floral volatiles: from biosynthesis to function |
Author(s): | Muhlemann JK; Klempien A; Dudareva N; |
Address: | "Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA" |
ISSN/ISBN: | 1365-3040 (Electronic) 0140-7791 (Linking) |
Abstract: | "Floral volatiles have attracted humans' attention since antiquity and have since then permeated many aspects of our lives. Indeed, they are heavily used in perfumes, cosmetics, flavourings and medicinal applications. However, their primary function is to mediate ecological interactions between flowers and a diverse array of visitors, including pollinators, florivores and pathogens. As such, they ultimately ensure the plants' reproductive and evolutionary success. To date, over 1700 floral volatile organic compounds (VOCs) have been identified. Interestingly, they are derived from only a few biochemical networks, which include the terpenoid, phenylpropanoid/benzenoid and fatty acid biosynthetic pathways. These pathways are intricately regulated by endogenous and external factors to enable spatially and temporally controlled emission of floral volatiles, thereby fine-tuning the ecological interactions facilitated by floral volatiles. In this review, we will focus on describing the biosynthetic pathways leading to floral VOCs, the regulation of floral volatile emission, as well as biological functions of emitted volatiles" |
Keywords: | Animals Fatty Acids/chemistry Flowers/*chemistry/physiology Metabolic Networks and Pathways *Odorants Plants/chemistry Pollination Terpenes/chemistry Volatile Organic Compounds/*chemistry benzenoids floral scent florivory phenylpropanoids regulation terpe; |
Notes: | "MedlineMuhlemann, Joelle K Klempien, Antje Dudareva, Natalia eng Research Support, Non-U.S. Gov't Review 2014/03/05 Plant Cell Environ. 2014 Aug; 37(8):1936-49. doi: 10.1111/pce.12314. Epub 2014 Apr 14" |