Title: | Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways |
Author(s): | Mur LA; Prats E; Pierre S; Hall MA; Hebelstrup KH; |
Address: | "Molecular Plant Pathology Group, Institute of Environmental and Rural Science, Aberystwyth University Aberystwyth, UK" |
ISSN/ISBN: | 1664-462X (Print) 1664-462X (Electronic) 1664-462X (Linking) |
Abstract: | "Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used" |
Keywords: | ethylenes jasmonic acid nitric oxide pathogens resistance mechanisms salicylic acid signaling pathways; |
Notes: | "PubMed-not-MEDLINEMur, Luis A J Prats, Elena Pierre, Sandra Hall, Michael A Hebelstrup, Kim H eng Switzerland 2013/07/03 Front Plant Sci. 2013 Jun 27; 4:215. doi: 10.3389/fpls.2013.00215. Print 2013" |