Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractHigh-CO(2) Modified Atmosphere Packaging with Superchilling (-1.3 ( degrees )C) Inhibit Biochemical and Flavor Changes in Turbot (Scophthalmus maximus) during Storage    Next Abstract[Allelopathic effects of invasive weed Solidago canadensis on native plants] »

Chemosphere


Title:Combined experimental and theoretical study of o-xylene elimination on Fe-Mn oxides catalysts
Author(s):Mei J; Shen Y; Li Y; Zhang S; Shen Y; Li W; Cheng Z; Zhao J; Chen J;
Address:"College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China. Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China. Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China. Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China. Electronic address: zhaojk@zjut.edu.cn. College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China. Electronic address: cjr@zjnu.cn"
Journal Title:Chemosphere
Year:2022
Volume:20211228
Issue:
Page Number:133442 -
DOI: 10.1016/j.chemosphere.2021.133442
ISSN/ISBN:1879-1298 (Electronic) 0045-6535 (Linking)
Abstract:"The development of low-cost and easily accessible catalysts to realize the practical applications of catalytic combustion of volatile organic compounds remains a challenge. In this work, a series of Fe-Mn oxides catalysts were prepared via a facile redox-precipitation route for the elimination of o-xylene. Among the synthesized catalysts, Fe3Mn1-RP exhibited excellent activity for o-xylene elimination with a T(50) and T(90) of 223 degrees C and 236 degrees C, respectively (o-xylene concentration = 500 ppm, WHSV = 36,000 mL g(-1) h(-1)). Characterization results demonstrated that superior catalytic activity could be achieved from large specific surface area, good reducibility and high proportion of Mn(4+). Besides, high Fe contents proved beneficial in generating additional oxygen vacancies, thereby improving the performance of the catalyst. The stable crystal structures and surface electron density distributions of the catalysts, and adsorption sites of o-xylene on the catalyst surface, were also determined through density functional theory (DFT) calculations to provide an in-depth mechanism on how the o-xylene oxidation occurred. Moreover, analysis of the energy barrier during the oxidation process proved that the ring-opening reaction on the surface of Fe3Mn1-RP with an activation energy as low as 2.46 eV would more likely occur via oxygen vacancies"
Keywords:"Catalysis Models, Theoretical *Oxides *Xylenes Catalytic combustion Dft Fe-Mn oxides O-xylene Ring-opening;"
Notes:"MedlineMei, Ji Shen, Yao Li, Yuanming Zhang, Shihan Shen, Yi Li, Wei Cheng, Zhuowei Zhao, Jingkai Chen, Jianrong eng England 2022/01/01 Chemosphere. 2022 Apr; 292:133442. doi: 10.1016/j.chemosphere.2021.133442. Epub 2021 Dec 28"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 18-06-2024