Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Inhibition of seed germination by extracts of bitter Hawkesbury watermelon containing cucurbitacin, a feeding stimulant for corn rootworm (Coleoptera: Chrysomelidae)"    Next AbstractCauses and consequences of variability in peptide mating pheromones of ascomycete fungi »

J Cell Sci


Title:Molecular mechanisms of chemotropism and cell fusion in unicellular fungi
Author(s):Martin SG;
Address:"Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland sophie.martin@unil.ch"
Journal Title:J Cell Sci
Year:2019
Volume:20190531
Issue:11
Page Number: -
DOI: 10.1242/jcs.230706
ISSN/ISBN:1477-9137 (Electronic) 0021-9533 (Linking)
Abstract:"In all eukaryotic phyla, cell fusion is important for many aspects of life, from sexual reproduction to tissue formation. Fungal cells fuse during mating to form the zygote, and during vegetative growth to connect mycelia. Prior to fusion, cells first detect gradients of pheromonal chemoattractants that are released by their partner and polarize growth in their direction. Upon pairing, cells digest their cell wall at the site of contact and merge their plasma membrane. In this Review, I discuss recent work on the chemotropic response of the yeast models Saccharomyces cerevisiae and Schizosaccharomyces pombe, which has led to a novel model of gradient sensing: the cell builds a motile cortical polarized patch, which acts as site of communication where pheromones are released and sensed. Initial patch dynamics serve to correct its position and align it with the gradient from the partner cell. Furthermore, I highlight the transition from cell wall expansion during growth to cell wall digestion, which is imposed by physical and signaling changes owing to hyperpolarization that is induced by cell proximity. To conclude, I discuss mechanisms of membrane fusion, whose characterization remains a major challenge for the future"
Keywords:Cell Communication Cell Fusion Cell Polarity/physiology Cell Wall/*metabolism Chemotactic Factors/metabolism Chemotaxis/*physiology Membrane Fusion/*physiology Pheromones/metabolism Saccharomyces cerevisiae/*physiology Schizosaccharomyces/*physiology Cdc4;
Notes:"MedlineMartin, Sophie G eng Research Support, Non-U.S. Gov't Review England 2019/06/04 J Cell Sci. 2019 May 31; 132(11):jcs230706. doi: 10.1242/jcs.230706"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 19-12-2024