Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEffects of Root-Colonizing Fluorescent Pseudomonas Strains on Arabidopsis Resistance to a Pathogen and an Herbivore    Next AbstractMachine Learning in Human Olfactory Research »

Chemosphere


Title:"Influence of oxygen, UV light and reactive dissolved organic matter on the photodemethylation and photoreduction of monomethylmercury in model freshwater"
Author(s):Lotfi-Kalahroodi E; Le Bechec M; Tessier E; Pigot T; Amouroux D;
Address:"Universite de Pau et des Pays de L'Adour, E2S/UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour L'environnement et Les Materiaux (IPREM), 64000, Pau, France. Electronic address: Elaheh.lotfi-kalahroodi@umu.se. Universite de Pau et des Pays de L'Adour, E2S/UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour L'environnement et Les Materiaux (IPREM), 64000, Pau, France"
Journal Title:Chemosphere
Year:2023
Volume:20230417
Issue:
Page Number:138675 -
DOI: 10.1016/j.chemosphere.2023.138675
ISSN/ISBN:1879-1298 (Electronic) 0045-6535 (Linking)
Abstract:"The key factors which affect the abiotic photodemethylation process of monomethylmercury (MMHg) in the freshwaters has remained unclear. Hence, this work aimed to better elucidate the abiotic photodemethylation pathway in a model freshwater. Anoxic and oxic conditions were implemented to investigate the simultaneous photodemethylation to Hg(II) and photoreduction to Hg(0). MMHg freshwater solution was irradiated through exposure to three wavelength ranges of full light (280-800 nm), without short UVB (305-800 nm), and visible light (400-800 nm). The kinetic experiments were performed following dissolved and gaseous Hg species concentrations (i.e., MMHg, iHg(II), Hg(0)). A comparison between two methods of post-irradiation purging and continuous-irradiation purging confirmed MMHg photodecomposition to Hg(0) is mainly induced by a first photodemethylation step to iHg(II) followed by a photoreduction step to Hg(0). Photodemethylation under full light extent normalized to absorbed radiation energy showed a higher rate constant in anoxic conditions at 18.0 +/- 2.2 kJ(-1) compared to oxic conditions at 4.5 +/- 0.4 kJ(-1). Moreover, photoreduction also increased up to four-fold under anoxic conditions. Normalized and wavelength-specific photodemethylation (K(pd)) and photoreduction (K(pr)) rate constants were also calculated for natural sunlight conditions to evaluate the role of each wavelength range. The relative ratio in wavelength-specific K(PAR): K(long UVB+ UVA): K (short UVB) showed higher dependence on UV light for photoreduction at least ten-fold compared to photodemethylation, regardless of redox conditions. Both results using Reactive Oxygen Species (ROS) scavenging methods and Volatile Organic Compounds (VOC) measurements revealed the occurrence and production of low molecular weight (LMW) organic compounds that are as photoreactive intermediates responsible for MMHg photodemethylation and iHg(II) photoreduction in the dominant pathway. This study also supports the role of dissolved oxygen as an inhibitor for the photodemethylation pathways driven by LMW photosensitizers"
Keywords:"Ultraviolet Rays *Methylmercury Compounds Dissolved Organic Matter Oxygen *Water Pollutants, Chemical/analysis *Mercury/analysis Fresh Water Gaseous mercury Irradiation Mercury speciation Photodemethylation Photoreduction Reactive organic species Reactive;"
Notes:"MedlineLotfi-Kalahroodi, Elaheh Le Bechec, Mickael Tessier, Emmanuel Pigot, Thierry Amouroux, David eng England 2023/04/20 Chemosphere. 2023 Jul; 330:138675. doi: 10.1016/j.chemosphere.2023.138675. Epub 2023 Apr 17"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 18-06-2024