Title: | Enhanced aphid detoxification when confronted by a host with elevated ROS production |
Address: | "a Department of Entomology ; Institute for Plant Genomics & Biotechnology ; Texas A&M University; College Station , TX USA" |
DOI: | 10.1080/15592324.2015.1010936 |
ISSN/ISBN: | 1559-2324 (Electronic) 1559-2316 (Print) 1559-2316 (Linking) |
Abstract: | "Reactive oxygen species (ROS) plays an important role in plant defense responses against bacteria, fungi and insect pests. Most recently, we have demonstrated that loss of Arabidopsis thaliana BOTRYTIS-INDUCED KINASE1 (BIK1) function releases its suppression of aphid-induced H2O2 production and cell death, rendering the bik1 mutant more resistant to green peach aphid (Myzus persicae) than wild-type plants. However, little is known regarding how ROS-related gene expression is correlated with bik1-mediated resistance to aphids, or whether these aphids biochemically respond to the oxidative stress. Here, we show that the bik1 mutant exhibited elevated basal expression of ROS-generating and -responsive genes, but not ROS-metabolizing genes. Conversely, we detected enhanced detoxification enzymatic activities in aphids reared on bik1 plants compared to those on wild-type plants, suggesting that aphids counter the oxidative stress associated with bik1 through elevated metabolic resistance" |
Keywords: | "Animals Aphids/*metabolism Arabidopsis/genetics/*parasitology Arabidopsis Proteins/genetics/metabolism Gene Expression Regulation, Plant Genes, Plant Herbivory *Host-Parasite Interactions *Inactivation, Metabolic Protein Serine-Threonine Kinases/genetics/;" |
Notes: | "MedlineLei, Jiaxin Zhu-Salzman, Keyan eng 2015/05/02 Plant Signal Behav. 2015; 10(4):e1010936. doi: 10.1080/15592324.2015.1010936" |