Title: | Enhanced Photocatalytic Activity and Stability of Bi(2)WO(6) - TiO(2)-N Nanocomposites in the Oxidation of Volatile Pollutants |
Author(s): | Kovalevskiy N; Cherepanova S; Gerasimov E; Lyulyukin M; Solovyeva M; Prosvirin I; Kozlov D; Selishchev D; |
Address: | "Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia. Research and Educational Center 'Institute of Chemical Technologies', Novosibirsk State University, 630090 Novosibirsk, Russia" |
ISSN/ISBN: | 2079-4991 (Print) 2079-4991 (Electronic) 2079-4991 (Linking) |
Abstract: | "The development of active and stable photocatalysts for the degradation of volatile organic compounds under visible light is important for efficient light utilization and environmental protection. Titanium dioxide doped with nitrogen is known to have a high activity but it exhibits a relatively low stability due to a gradual degradation of nitrogen species under highly powerful radiation. In this paper, we show that the combination of N-doped TiO(2) with bismuth tungstate prevents its degradation during the photocatalytic process and results in a very stable composite photocatalyst. The synthesis of Bi(2)WO(6)-TiO(2)-N composites is preformed through the hydrothermal treatment of an aqueous medium containing nanocrystalline N-doped TiO(2), as well as bismuth (III) nitrate and sodium tungstate followed by drying in air. The effect of the molar ratio between the components on their characteristics and photocatalytic activity is discussed. In addition to an enhanced stability, the composite photocatalysts with a low content of Bi(2)WO(6) also exhibit an enhanced activity that is substantially higher than the activity of individual TiO(2)-N and Bi(2)WO(6) materials. Thus, the Bi(2)WO(6)-TiO(2)-N composite has the potential as an active and stable photocatalyst for efficient purification of air" |
Keywords: | Bi2WO6 N-doped TiO2 Uv VOC oxidation composite photocatalyst photocatalysis stability test visible light; |
Notes: | "PubMed-not-MEDLINEKovalevskiy, Nikita Cherepanova, Svetlana Gerasimov, Evgeny Lyulyukin, Mikhail Solovyeva, Maria Prosvirin, Igor Kozlov, Denis Selishchev, Dmitry eng AAAA-A17-117041710087-3/Ministry of Science and High Education of the Russian Federation/ 075-15-2021-457 (Mcapital KA, Cyrillic- 5634.2021.1.3)/Council on grants of the President of the Russian Federation/ Switzerland 2022/02/16 Nanomaterials (Basel). 2022 Jan 23; 12(3):359. doi: 10.3390/nano12030359" |