Title: | Nano Pt-decorated transparent solution-processed oxide semiconductor sensor with ppm detection capability |
Author(s): | Kang J; Kim KT; Jeon SP; Facchetti A; Kim J; Park SK; |
Address: | "School of Electrical and Electronic Engineering, Chung-Ang University Seoul 06974 Republic of Korea skpark@cau.ac.kr. Department of Chemistry and the Materials Research Center and the Argonne-Northwestern Solar Energy Research Center, Northwestern University Evanston Illinois 60208 USA. Flexterra Inc. Skokie Illinois 60077 USA. Department of Photonics and Nanoelectronics, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea jaekyunkim@hanyang.ac.kr" |
ISSN/ISBN: | 2046-2069 (Electronic) 2046-2069 (Linking) |
Abstract: | "In this study, we fabricated a transparent Pt-decorated indium gallium zinc oxide (IGZO) thin film based on a solution process to demonstrate a portable, low-cost volatile organic compound (VOC) based real-time monitoring system with the detection capability at as low as 1 ppm. The Pt/IGZO sensor shows remarkable response characteristics upon exposure of isobutylene (2-methylpropene) gas down to 1 ppm while also maintaining the reliability and reproducibility of the sensing capability, which is almost comparable to a commercial VOC sensor based on a photoionization detector (PID) method. For 1 ppm of isobutylene gas, the response and recovery time of the sensor estimated were as low as 25 s (S (90)) and 80 s (R (90)), respectively. The catalytic activity of Pt nanoparticles on an IGZO nano-thin film plays a key role in drastically enhancing the sensitivity and dynamic response behaviour of the VOC sensor. Furthermore, the solution-processed IGZO thin film decorated with Pt nanoparticles also represents a highly transparent (in visible region, approximately 90%) and low-cost fabrication platform, thereby, facilitating the optical visibility and disposability for future applications in the field of electronics. Therefore, we believe that the nano-Pt/IGZO hybrid material for VOC sensor developed by us will pave a way to detect any harmful chemical gases and VOCs in various environments" |
Notes: | "PubMed-not-MEDLINEKang, Jingu Kim, Kyung-Tae Jeon, Seoung-Pil Facchetti, Antonio Kim, Jaekyun Park, Sung Kyu eng England 2019/02/20 RSC Adv. 2019 Feb 20; 9(11):6193-6198. doi: 10.1039/c8ra09917k. eCollection 2019 Feb 18" |