Title: | Glucosylation of (Z)-3-hexenol informs intraspecies interactions in plants: A case study in Camellia sinensis |
Author(s): | Jing T; Zhang N; Gao T; Zhao M; Jin J; Chen Y; Xu M; Wan X; Schwab W; Song C; |
Address: | "State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China. Biotechnology of Natural Products, Technische Universitat Munchen, 85354, Freising, Germany" |
ISSN/ISBN: | 1365-3040 (Electronic) 0140-7791 (Linking) |
Abstract: | "Plants emit a variety of volatiles in response to herbivore attack, and (Z)-3-hexenol and its glycosides have been shown to function as defence compounds. Although the ability to incorporate and convert (Z)-3-hexenol to glycosides is widely conserved in plants, the enzymes responsible for the glycosylation of (Z)-3-hexenol remained unknown until today. In this study, uridine-diphosphate-dependent glycosyltransferase (UGT) candidate genes were selected by correlation analysis and their response to airborne (Z)-3-hexenol, which has been shown to be taken up by the tea plant. The allelic proteins UGT85A53-1 and UGT85A53-2 showed the highest activity towards (Z)-3-hexenol and are distinct from UGT85A53-3, which displayed a similar catalytic efficiency for (Z)-3-hexenol and nerol. A single amino acid exchange E59D enhanced the activity towards (Z)-3-hexenol, whereas a L445M mutation reduced the catalytic activity towards all substrates tested. Transient overexpression of CsUGT85A53-1 in tobacco significantly increased the level of (Z)-3-hexenyl glucoside. The functional characterization of CsUGT85A53 as a (Z)-3-hexenol UGT not only provides the foundation for the biotechnological production of (Z)-3-hexenyl glucoside but also delivers insights for the development of novel insect pest control strategies in tea plant and might be generally applicable to other plants" |
Keywords: | Camellia sinensis/genetics/*metabolism Gas Chromatography-Mass Spectrometry Glycosides/metabolism Glycosylation Glycosyltransferases/genetics/metabolism Hexanols/*metabolism Plant Proteins/genetics/metabolism Real-Time Polymerase Chain Reaction Volatile O; |
Notes: | "MedlineJing, Tingting Zhang, Na Gao, Ting Zhao, Mingyue Jin, Jieyang Chen, Yongxian Xu, Miaojing Wan, Xiaochun Schwab, Wilfried Song, Chuankui eng Research Support, Non-U.S. Gov't 2018/11/14 Plant Cell Environ. 2019 Apr; 42(4):1352-1367. doi: 10.1111/pce.13479. Epub 2018 Dec 10" |