Title: | Genetic variation in foraging traits among inbred lines of a predatory mite |
Author(s): | Jia F; Margolies DC; Boyer JE; Charlton RE; |
Address: | "Department of Entomology, Kansas State University, Manhattan, KS 66506, USA. fjia@oznet.ksu.edu" |
ISSN/ISBN: | 0018-067X (Print) 0018-067X (Linking) |
Abstract: | "Response of predators to herbivore-induced plant volatiles can affect the length of time a predator spends in a prey patch and the probability of a predator finding a new prey patch. Variation in response to herbivore-induced plant volatiles may lead to different foraging decisions among individuals, thereby affecting both within-patch dynamics and between-patch dispersal. We found significant phenotypic and additive genetic variation in two behavioral assays of response to herbivore-induced plant volatiles among inbred isofemale lines of the predatory mite, Phytoseiulus persimilis. In wind-tunnel tests to measure patch residence time, adult female predators from certain lines left prey patches sooner than others when a distant source of herbivore-induced plant volatiles was presented; whereas such variation disappeared when no distant volatiles were presented. In a measure of patch location, certain lines were more likely than others to locate a prey-infested leaf disc; again there was no difference when uninfested leaf discs were used. Patch location was negatively correlated with patch residence. That is, lines that were more likely to leave a prey patch in the presence of distant volatiles were also more likely to find an odor source (ie, prey patch) from a distance of 20 cm. These two foraging-related behaviors are heritable. A continuous distribution of both behaviors indicated that several to many loci may be responsible for these behavioral traits. Our line-crossing experiments suggested that maternal influence could be excluded. Substantial phenotypic variation in two other foraging-related traits, consumption and oviposition, were also detected among inbred lines. Consumption and oviposition were positively correlated; however, the relationship (slope) varied among inbred lines, suggesting that predatory mites vary in food conversion efficiency. A relationship was detected between patch residence and consumption. Patch location, as one important foraging trait, appeared to be negatively related to consumption, suggesting a trade-off between searching for patches and reproduction" |
Keywords: | "Animals Behavior, Animal Crosses, Genetic *Fabaceae/metabolism/parasitology Female *Genetic Variation Host-Parasite Interactions Inbreeding Mites/*physiology Oviposition/physiology Phenotype Pheromones/*physiology Plant Leaves/parasitology Plants, Medicin;" |
Notes: | "MedlineJia, F Margolies, D C Boyer, J E Charlton, R E eng England 2002/10/26 Heredity (Edinb). 2002 Nov; 89(5):371-9. doi: 10.1038/sj.hdy.6800145" |