Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"The genetic structure and diversity of the A and B mating-type genes from the tropical oyster mushroom, Pleurotus djamor"    Next AbstractHow Adsorption of Pheromones on Aerosols Controls Their Transport »

Genetics


Title:Evolution of the bipolar mating system of the mushroom Coprinellus disseminatus from its tetrapolar ancestors involves loss of mating-type-specific pheromone receptor function
Author(s):James TY; Srivilai P; Kues U; Vilgalys R;
Address:"Department of Biology, Duke University, Durham, North Carolina 27708, USA. tyj2@duke.edu"
Journal Title:Genetics
Year:2006
Volume:20060203
Issue:3
Page Number:1877 - 1891
DOI: 10.1534/genetics.105.051128
ISSN/ISBN:0016-6731 (Print) 0016-6731 (Linking)
Abstract:"Mating incompatibility in mushroom fungi is controlled by the mating-type loci. In tetrapolar species, two unlinked mating-type loci exist (A and B), whereas in bipolar species there is only one locus. The A and B mating-type loci encode homeodomain transcription factors and pheromones and pheromone receptors, respectively. Most mushroom species have a tetrapolar mating system, but numerous transitions to bipolar mating systems have occurred. Here we determined the genes controlling mating type in the bipolar mushroom Coprinellus disseminatus. Through positional cloning and degenerate PCR, we sequenced both the transcription factor and pheromone receptor mating-type gene homologs from C. disseminatus. Only the transcription factor genes segregate with mating type, discounting the hypothesis of genetic linkage between the A and B mating-type loci as the causal origin of bipolar mating behavior. The mating-type locus of C. disseminatus is similar to the A mating-type locus of the model species Coprinopsis cinerea and encodes two tightly linked pairs of homeodomain transcription factor genes. When transformed into C. cinerea, the C. disseminatus A and B homologs elicited sexual reactions like native mating-type genes. Although mating type in C. disseminatus is controlled by only the transcription factor genes, cellular functions appear to be conserved for both groups of genes"
Keywords:"Agaricales/*genetics Alleles *Evolution, Molecular *Genes, Mating Type, Fungal Mitogen-Activated Protein Kinase Kinases Polymorphism, Genetic *Polyploidy Protein Kinases/genetics Receptors, Pheromone/deficiency/*genetics/physiology Saccharomyces cerevisia;"
Notes:"MedlineJames, Timothy Y Srivilai, Prayook Kues, Ursula Vilgalys, Rytas eng Comparative Study Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2006/02/08 Genetics. 2006 Mar; 172(3):1877-91. doi: 10.1534/genetics.105.051128. Epub 2006 Feb 3"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024