Title: | Adsorption of multicomponent VOCs on various biomass-derived hierarchical porous carbon: A study on adsorption mechanism and competitive effect |
Author(s): | Huang X; Tang M; Li H; Wang L; Lu S; |
Address: | "State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China. State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, China. Electronic address: lytmh1214@zju.edu.cn" |
DOI: | 10.1016/j.chemosphere.2022.137513 |
ISSN/ISBN: | 1879-1298 (Electronic) 0045-6535 (Linking) |
Abstract: | "Biomass-derived porous carbon materials are potential adsorbents for VOCs. In this work, biomass-derived nitrogen-doped hierarchical porous carbons (NHPCs) were synthesized by a one-step pyrolysis activation combined with nitrogen doping method from several biomass wastes (corn straw, wheat stalk, bamboo, pine, and corncob). NHPCs have a hierarchical porous structure with micro-meso-macropores distribution, nitrogen doping, large specific surface area, and pore volume. The corncob derived carbon (NHPC-CC) has the best activation result as analyses showed that a lower ash content and higher total cellulose composition content of the biomass result in a better pore activation effect. Single and multi-component dynamic adsorption tests of typical VOCs (benzene, toluene, and chlorobenzene) were conducted on NHPCs in laboratory conditions ( approximately 500 ppm). Promising VOC adsorption capacity and great adsorption kinetics with low mass transfer resistance were found on NHPCs. Correlation analysis showed that the high VOC adsorption capacity and great adsorption kinetics can be attributed to the large surface area of micro-mesopores and the mass transfer channels provided by meso-macropores respectively. The competitive dynamic adsorption tests revealed that the VOC with lower saturated vapor pressure has more adsorption sites on the surface of micro-mesopores and stronger adsorption force, which results in the higher adsorption capacity and desorption caused by substitution reaction in VOCs competitive adsorption process. In detail, the process of toluene and chlorobenzene competitive adsorption was described. Besides, well recyclability of NHPC-CC was revealed as the VOCs adsorption capacity reductions were less than 10% after four adsorption-desorption cycles. All studies showed that the NHPC-CC could be potential adsorbent for VOCs in industrial process" |
Keywords: | *Carbon/chemistry Adsorption Porosity Biomass *Volatile Organic Compounds Nitrogen Toluene Biomass wastes Competitive adsorption Hierarchical porous carbon Recyclability VOCs adsorption; |
Notes: | "MedlineHuang, Xinlei Tang, Minghui Li, Hongxian Wang, Ling Lu, Shengyong eng England 2022/12/11 Chemosphere. 2023 Feb; 313:137513. doi: 10.1016/j.chemosphere.2022.137513. Epub 2022 Dec 7" |