Title: | Expressional and functional comparisons of two general odorant binding proteins in Agrotis ipsilon |
Author(s): | Huang GZ; Liu JT; Zhou JJ; Wang Q; Dong JZ; Zhang YJ; Li XC; Li J; Gu SH; |
Address: | "College of Plant Protection, Agricultural University of Hebei, Baoding, 071001, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China; College of Plant Protection, Shenyang Agricultural University, Shenyang, China. Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China. College of Plant Protection, Agricultural University of Hebei, Baoding, 071001, China. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China; Department of Entomology and BIO5 Institute, University of Arizona, Tucson, USA. College of Plant Protection, Agricultural University of Hebei, Baoding, 071001, China. Electronic address: lijing1976416514@163.com. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China. Electronic address: shgu@ippcaas.cn" |
DOI: | 10.1016/j.ibmb.2018.05.003 |
ISSN/ISBN: | 1879-0240 (Electronic) 0965-1748 (Linking) |
Abstract: | "Insect general odorant binding proteins (GOBPs) have been long thought to bind and transport host plant volatiles to the olfactory receptors on the dendrite membrane of the olfactory neurons. Recent studies indicate that they can also bind female sex pheromones. In present study, two GOBP genes, AipsGOBP1 and AipsGOBP2 were cloned from the adult antennae of Agrotis ipsilon. Tissue expression profiles indicated that both of them are antennae-specific and more abundant in the female antennae than in the male antennae. Temporal expression profiles showed that both AipsGOBP1 and AipsGOBP2 began to express in antennae 3 days prior to adult emergence from pupae, and reached their highest expression level 3 and 4 days after adult emergence, respectively. Mating increased their expression in the female antennae but reduced their expression in the male antennae. In situ hybridization and immunolocalization demonstrated that both AipsGOBP1 and AipsGOBP2 are expressed and co-localized in sensilla basiconica and sensilla trichodea of both sexes. AipsGOBP2 exhibited a high binding affinity in vitro with the two major sex pheromone components Z7-12:Ac and Z9-14:Ac and the four plant volatiles cis-3-hexen-1-ol, oleic acid, dibutyl phthalate and beta-caryophyllene with Ki values less than 5?ª+muM. AipsGOBP1, on the other hand, showed medium binding affinities with the five A. ipsilon sex pheromones and six plant volatiles. AipsGOBP2 also showed a broader ligand-binding spectrum and a greater ligand-binding affinity than AipsGOBP1 with the tested aldehyde and alcohol sex pheromones of Lepidoptera species. Taken together, our results indicate that AipsGOBP2 may play greater roles than AipsGOBP1 does in binding sex pheromones and host plant volatiles" |
Keywords: | "Amino Acid Sequence Animals Female Ligands Male Moths/growth & development/*metabolism Phylogeny Plant Extracts Receptors, Odorant/*metabolism Sensilla/*metabolism Sequence Alignment Sequence Analysis, DNA Sexual Behavior, Animal/*physiology Agrotis ipsil;" |
Notes: | "MedlineHuang, Guang-Zhen Liu, Jing-Tao Zhou, Jing-Jiang Wang, Qian Dong, Jian-Zhen Zhang, Yong-Jun Li, Xian-Chun Li, Jing Gu, Shao-Hua eng Comparative Study Research Support, Non-U.S. Gov't England 2018/05/21 Insect Biochem Mol Biol. 2018 Jul; 98:34-47. doi: 10.1016/j.ibmb.2018.05.003. Epub 2018 May 17" |