Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractCaterpillar-induced rice volatiles provide enemy-free space for the offspring of the brown planthopper    Next Abstract"A high-resolution typical pollution source emission inventory and pollution source changes during the COVID-19 lockdown in a megacity, China" »

J Colloid Interface Sci


Title:Multidimensional assembly of oxygen vacancy-rich amorphous TiO(2)-BiOBr-sepiolite composite for rapid elimination of formaldehyde and oxytetracycline under visible light
Author(s):Hu X; Li C; Song J; Zheng S; Sun Z;
Address:"School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, PR China. School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, PR China. Electronic address: zhimingsun@cumtb.edu.cn"
Journal Title:J Colloid Interface Sci
Year:2020
Volume:20200412
Issue:
Page Number:61 - 73
DOI: 10.1016/j.jcis.2020.04.035
ISSN/ISBN:1095-7103 (Electronic) 0021-9797 (Linking)
Abstract:"Herein, a novel oxygen vacancy-rich amorphous TiO(2)-BiOBr-sepiolite composite was synthesized through a facile one-pot solvothermal method. Under visible light, it exhibited enhanced adsorption and photocatalytic removal activity towards gaseous formaldehyde, whose reaction rate constant is nearly 11.75, 3.44, 1.69, 2.18 and 6.27 times higher than those of amorphous TiO(2), BiOBr, TiO(2)-BiOBr, oxygen vacancy-poor composite and P25, respectively. Moreover, it also displayed significantly improved photodegradation performance towards oxytetracycline under visible light. The improved photocatalytic activity is mainly ascribed to the synergy between the ternary heterogeneous structure and introduced oxygen vacancy, leading to the superior adsorption performance, extended visible-light adsorption scope and faster carriers' separation rate. The photogenerated holes are the dominant active species during the reaction process. Additionally, a plausible photocatalytic degradation pathway for oxytetracycline was also proposed. In general, this work provides a viable strategy of visible-light-driven photocatalyst for practical environmental remediation of indoor volatile organic compounds (VOCs) and pharmaceuticals and personal care products (PPCPs)"
Keywords:Bismuth/*chemistry Catalysis/radiation effects Formaldehyde/*chemistry *Light Oxygen/*chemistry Oxytetracycline/*chemistry Particle Size Photochemical Processes/radiation effects Surface Properties Titanium/*chemistry Amorphous TiO(2) BiOBr Formaldehyde O;
Notes:"MedlineHu, Xiaolong Li, Chunquan Song, Junying Zheng, Shuilin Sun, Zhiming eng 2020/04/20 J Colloid Interface Sci. 2020 Aug 15; 574:61-73. doi: 10.1016/j.jcis.2020.04.035. Epub 2020 Apr 12"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 19-12-2024