Title: | Effects of aromatic compounds on antennal responses and on the pheromone-binding proteins of the gypsy moth (Lymantria dispar) |
Address: | "Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6" |
ISSN/ISBN: | 1464-3553 (Electronic) 0379-864X (Linking) |
Abstract: | "Female gypsy moths emit a pheromone, (+)-disparlure, which the males follow until they locate the emitter. The male moths' antennae are covered with innervated sensory hairs, specialized in detection of the pheromone. The neurons in these sensory hairs are bathed by a solution rich in pheromone-binding protein (PBP). PBPs are soluble proteins that bind the pheromone and other odorants reversibly with variable thermodynamic and kinetic selectivity and are essential for olfactory responses. Here, we have studied the interaction between 2 gypsy moth PBPs with aromatic compounds that modulate the responses of male moth antennae to (+)-disparlure. The aromatic compounds do not elicit responses by themselves, but when administered together with pheromone, they inhibit, enhance, or prolong the electrophysiological response to the pheromone. Three interactions between the compounds and PBPs were studied: 1) the equilibrium binding of the compounds by themselves to the PBPs, 2) the equilibrium binding of the compounds in the presence of pheromone or a fluorescent reporter ligand, and 3) the effect of the compounds on the conformation of the pheromone-PBP complex. A subset of compounds causes a prolongation of the electroantennogram response, and from this study, we conclude that these compounds follow a structure-activity pattern and stabilize a particular conformer of the PBPs that appears to activate the olfactory response" |
Keywords: | "Animals Arthropod Antennae/*drug effects Carrier Proteins/*metabolism Female Hydrocarbons, Aromatic/*pharmacology Male Molecular Structure *Moths Pheromones/metabolism/*pharmacology Structure-Activity Relationship;" |
Notes: | "MedlineGong, Yongmei Plettner, Erika eng Research Support, Non-U.S. Gov't England 2010/12/17 Chem Senses. 2011 Mar; 36(3):291-300. doi: 10.1093/chemse/bjq130. Epub 2010 Dec 15" |